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A recent survey of Canadian mathematicians found that while 43% of the 

participants use computer programming in their research, only 18% integrate this 

activity into their teaching. The first statistic highlights the significant place that 

programming may have in professional mathematics practice. The second suggests 

that such significance may not yet be acknowledged in undergraduate curricula 

across Canada. Our exploratory study involving 14 Canadian mathematicians 

sought to gain a deeper understanding of the place of programming in both contexts 

and therefore describe the gap from a more qualitative perspective. The views of our 

participants highlight some important issues that may require attention in order to 

bridge the identified gaps, should that be deemed the favourable direction to take.    
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INTRODUCTION  

Several mathematicians and researchers in math education have reported on the 

disconnection between undergraduate curricula and professional practice. A recent 

quantitative survey of 302 Canadian mathematicians points to one possible aspect of 

the gap: while 43% of the participants reported using computer programming in their 

research, only 18% indicated that they rely on this activity in their teaching (Buteau, 

Jarvis, & Lavicza, 2014). Furthermore, when compared to the other technologies 

surveyed, programming was the only one for which such a gap was observed.  

 

Figure 1: An intriguing gap for programming identified by Buteau et al., 2014.  

The first statistic highlights the potential that programming may have for doing 

mathematics and the possible relevance of integrating it into university courses. The 

second inspires further research: why would such a gap exist? Buteau et al. (2014) 



  

predict that the learning curve for programming is greater than for other tools such as 

computer algebra systems (e.g., Mathematica). They also mention the logistical 

obstacles of curriculum-wide integration. We were unaware of studies that verified 

these hypotheses or explored other possible explanations, while providing an in-

depth look at how the 43% and 18% of mathematicians might be using programming 

in their research and teaching respectively. We hence wondered: what is the place of 

programming in mathematical research and undergraduate math education?  

A FRAMEWORK FOR CAPTURING AND COMPARING PRACTICES 

Our research question, posed as is, raises a subtle issue: since education contains two 

distinct perspectives, the teacher’s and the student’s, which should we take? After 

speaking with mathematicians, it appeared that many of them do not see fundamental 

similarities between the acts of teaching and researching. In contrast, we might 

assume that student experience should reflect mathematicians’ work. We therefore 

decided that a comparison of research practices with learning practices (as opposed 

to teaching practices) could not only be more interesting, but also more important.  

To be able to capture and compare such practices, we turned to Chevallard’s (1998) 

Anthropological Theory of the Didactic (ATD), which provides a model for 

apprehending the various elements of mathematical activity that occur in any context 

(in this case, professional and educational). According to the ATD, an individual’s 

“practices” are understood through the notion of “praxeology”, which takes into 

account the know-how (the praxis) and the discourses (the logos) that describe, 

legitimise, explain, and produce the praxis. The praxis contains two components: 

tasks (things to accomplish) and techniques (methods used to accomplish the tasks). 

Similarly, the logos can be divided into several levels: Chevallard (1998) 

distinguishes between technologies (justifications for the techniques) and theories 

(foundations underlying the technologies). Following the example of Artigue (2002), 

we have chosen to avoid the ambiguity of the word “technology” and label any logos 

as a “justification”. We will also classify different types of justifications, such as 

those that are pragmatic (concerning the productive potential of a technique) and 

those that are epistemic (concerning the potential of a technique to contribute to the 

understanding of the objects involved). As Artigue (2002) suggests, the place of 

certain techniques within an institution could depend on such justification types.  

This leads us to another crucial aspect of the ATD: individuals’ practices are framed 

by the social institutions where they live. Under the influence of institutional 

constraints, certain practices are normalized. Conversely, an increased acceptance of 

new practices can cause a reevaluation of constraints. To describe the variable status 

of practices within institutions, we use Morrissette’s (2011) characterization of     

1. Shared Practices, which are intimately tied to a profession and remain unquestioned; 

2. Admitted Practices, which are not shared by everyone in a profession, but are accepted 

because they have been shown to be effective by innovative practitioners; and  



  

3. Contested Practices, which are not accepted by everyone and are therefore situated at 

the boundaries of the professional culture.  

METHODOLOGICAL CONSIDERATIONS 

To gain a deeper understanding of how programming is integrated into the practices 

of mathematicians and their students, we carried out an exploratory study involving 

individual semi-directed interviews with 14 mathematicians: 3 women and 11 men of 

various ages, languages (French or English), and research domains, working within 

10 universities in 3 Canadian provinces (British Columbia, Ontario, and Québec).  

The structure of our interviews, captured in a written guide, was largely inspired by 

Vermersch’s (2006) entretien d’explicitation. This model considers the actions of an 

individual as the main source of reliable information regarding the reasoning 

involved in those actions (different from the reasoning adopted outside of the 

actions). Hence, the interviewer is mainly a guide who tries to lead the interviewee 

into a state of descriptive verbalisation, where they “relive” specific experiences. Our 

participants were encouraged to relive moments throughout their research and 

teaching, in relation to computer programming. Some chose to share resources they 

had developed (e.g., computer programs and activity outlines), which enhanced their 

descriptions. Nevertheless, some general reflections on mathematics, programming, 

and institutional constraints were also solicited from the participants.   

Interviews were recorded and transcribed. We then performed a categorical analysis 

(Van der Maren, 1996), using a mixed coding approach to identify, classify, and 

compare the main ideas. Examples of programming use underwent a supplementary 

characterisation using Chevallard’s (1998) framework in order to extract the types of 

tasks, techniques, and justifications that define research and learning practices.   

CLARIFICATION OF A DEFINITION  

At the beginning of our project, we were surprised at how difficult it was to develop 

a definition of “computer programming”. First of all, there was no clear agreement 

on what constitutes “programming” within the literature we had read. Secondly, we 

could not decide which kinds of activities to consider in our definition. It was clear 

that numerically solving a system of differential equations by developing a new 

method, writing some code, and ensuring the correct functioning of the resulting 

program should be seen as involving “programming”; but which steps exactly? 

Additionally, how should we classify activities such as the use of a computer algebra 

system to calculate a particularly difficult integral? Previous studies (e.g., Buteau et 

al., 2014) have distinguished between computer algebra systems and programming 

languages; but we can just as easily write a program in Mathematica as in C++.  

In hopes that our participants could help us circumscribe “programming” in the 

context of mathematics, we left the interpretation of this word up to them. From the 

perceptions that emerged, we identify programming as an activity that aims to 



  

construct a computer tool (a program) by way of three nonlinear tasks of varying 

importance: the development of an algorithm, the coding of the algorithm, and the 

verification and validation of the program. Still, there was no unanimity on the sorts 

of activities that correspond to the completion of these tasks. While some questioned 

whether or not using library routines in Mathematica really was “programming”, 

others proudly described examples of this type that allowed them to make major 

advances in their research. At times interviewees would take an even larger 

perspective, wondering, for example, whether or not geometric constructions in 

Geometer’s Sketchpad could be classified as “programming”. Other times, they were 

more restrictive, reducing programming to the task of writing code. While most 

participants recognized a mathematical character in programming, comparing it to 

solving a problem or constructing a proof, they also tended to restrict the whole 

activity to the status of a technique for accomplishing more important research tasks. 

THE PLACE OF PROGRAMMING IN MATHEMATICAL PRACTICES 

Based on the experiences described by our participants, we characterized several 

research and learning practices that may involve programming. What was 

particularly interesting was the varying degree to which programming (as we have 

just defined it) could be involved. Our analysis led us to identify six levels on which 

mathematicians or students may interact with programming: they may 

L0: Strictly observe the results of a computer program; 

L1: Manipulate the interface of a program; 

L2: Observe the code of a program; 

L3: Modify the code of a program; 

L4: Construct the code of a program, with elements (e.g., the algorithm) specified; or 

L5: Develop a program, including algorithm development, coding, and verification.     

The higher the level, the more the programming activity becomes visible and the 

more the mathematician or student becomes active in it. The identification of these 

levels allowed us to make important comparisons between the practices of a given 

mathematician and those intended to be developed by his/her students. In what 

follows, I restrict myself to an insightful selection of these practices, organized into 

two naturally-arising categories: “pure” and “applied” problem solving.   

“Pure” problem solving and the cases of Omar and Paul 

This category refers to when a mathematician or mathematics student seeks to 

develop abstract mathematical knowledge, the former contributing directly to the 

discipline and the latter supporting the personal education of the student. In both 

contexts, a main type of task where programming may be involved is the discovery 

of concepts, properties, or theories, typically realized through an Exploration Cycle 

including the observation of mathematical objects and the formulation/verification of 



  

conjectures. Our study shows that the place of programming within the associated 

praxeologies may differ significantly for mathematicians and their students.     

 Task Type: Discover mathematical concepts, properties, or theories 

 Technique Justification 

Omar 

L5 + Exploration Cycle  

until “sufficient”  

evidence collected 

(1) Epistemic: Gain insight to formulate conjectures 

and confidence to proceed to proof 

(2) Pragmatic: Organization, precision, speed, 

adaptability, and reusability of programs 

Omar’s 

Students 

L0 + Guided/ Limited  

Exploration Cycle  

in class 

Epistemic: Have intuition challenged and abstract 

theory rendered concrete, exciting, and memorable 

Pragmatic as above, but from professor’s perspective 

Table 1: Omar’s research praxeology vs. the praxeology proposed to his students.  

Like several of the pure mathematicians I interviewed, Omar often develops his own 

computer tools (L5) to collect evidence about the behaviour of the abstract objects he 

studies. He proceeds through an Exploration Cycle to first gain the insight necessary 

to formulate plausible conjectures and then build confidence in their truth. He 

justifies his technique principally in an epistemic fashion, exclaiming, for example, 

“Before starting to prove something, you'd better know it's true beyond a doubt!” 

Nonetheless, the pragmatic character of his programming is undeniable: he is free to 

control every aspect of his exploration, extend it to any number of otherwise tedious 

or impossible examples, and adapt his tool for completing future research tasks.    

Given his familiarity with creating programs to assist in his own discovery of 

mathematics, it is not surprising that Omar, like many of our participants, also 

develops tools within the context of his teaching to support his students’ 

understanding of challenging notions (e.g., spanning sets and linear independence). 

From the student’s point of view, however, the proposed praxeology is quite 

different from their professor’s: Omar’s linear algebra students are invited solely to 

observe the dynamic images produced by their professor (L0), are prompted to make 

conjectures, and are provided images that verify or refute their voiced conjectures. 

Their exploration is heavily guided and limited to the time available in class, and the 

programming activity remains completely inaccessible to them. The fact that Omar 

does not share his programs with his students parallels the way he (and other pure 

mathematicians) communicate their research results: once they have arrived at a 

theorem and its proof, they typically see no need to discuss the programming that 

assisted their exploratory work. Similarly in teaching, Omar sees no need to 

encourage further exploration with a program once he believes the main goal of 

student discovery has been achieved. Indeed, he emphasizes the epistemic quality of 

the proposed technique, claiming that observing carefully chosen computer-

generated results enables students to have their intuitions challenged and the abstract 



  

theories they’re learning rendered more concrete, interesting, and memorable. When 

he attributes a pragmatic value to the technique, it is in relation to himself: the 

examples he generates would be difficult, if not impossible, to reproduce on a board, 

and he would not have the same flexibility of re-executing programs in response to 

the needs of his students. A summary of Omar’s research praxeology and the 

counterpart praxeology he proposes to his students is given in Table 1.  

Paul is a probability professor whose table of praxeologies would differ from Omar’s 

table in terms of techniques and justifications. In his research projects that require 

the use of computer tools, he always remains at L0 or L1; the programming is done 

by a collaborator. And yet, he encourages his students to write and use their own 

programs (L4 or L5). Like Omar, Paul brings forth principally epistemic 

justifications; the difference is his claim that  

It's much better if the students can program it for themselves. If they're sitting in front of 

the screen and they can play with it and they can adjust parameters, it becomes a kind of a 

game and it's more interactive for them. And it's better than me just showing them a 

picture at the front of the classroom. 

We will return to this idea that higher-level interactions may have greater epistemic 

value. For now, this claim naturally raises the question: so, why doesn’t Omar invite 

his students to develop their own programs?   

Ironically, it is Paul who provides an enlightening story for framing the response to 

this question. It turns out that the probability course described above is geared 

towards science students; for math majors, computer technology is completely 

absent. Of course, there are many ways to “Discover mathematical concepts, 

properties, or theories”, and Paul’s pure math students are encouraged to adopt more 

traditional techniques. Upon reflecting on the addition of programming, Paul 

concluded: “I think it's the right way to go actually. I think that we're missing an 

opportunity here.” So, why not take the opportunity? At first, Paul discussed 

curricular constraints: the pure math students may not have the prerequisite 

knowledge needed for programming and it would take a great deal of time to develop 

and integrate new activities into an already jam-packed well-defined curriculum. 

Omar also explained that “There’s so much material in [his] course that it seems like 

it would be an exaggeration to ask them to program as well […] But, if we had more 

time, well it would be nice.” Since Paul already overcame curricular obstacles during 

the transformation of the probability course for science students, it would seem like 

something deeper is at play. Indeed, he eventually revealed that “Academia is a very 

conservative place. And there's a huge amount of inertia. And there's also a huge 

amount of independence among the different instructors.” He added: “I don't hear a 

lot of people talking about this being a great idea.” Omar elaborated on similar 

constraints imposed within his institution: “I realize that my department is very 

abstract […] And the students in pure math love that. But I believe it limits some of 

their abilities that are absolutely essential if they want to become researchers.”  



  

As reflected in this quote, the pure mathematicians in our study view programming 

(L5) as admitted amongst them and their colleagues. Phillippe summarizes their 

perspectives when he says that “Programming is really one tool among many others 

to do mathematics […] that is not necessary, but that is useful.” Why then is 

programming still deemed by some departments as contested for pure math students? 

In the past, some mathematicians (e.g., Bailey & Borwein, 2005) have implied that 

computer-based techniques were contested within the pure math community. Our 

participants point out that many Canadian universities are still anchored in this 

traditional culture that favors the chalk-and-talk paradigm and by-hand exercises. 

“Applied” problem solving and the cases of Barbara and Ben  

The institutionally-driven introduction of programming in Paul’s probability course 

for science students is likely related to the importance attributed to programming in 

the “applied” math community. As Barbara suggests, “It's absolutely indispensable 

for applied mathematicians.” When it comes to solving “real-world” problems, 

programming is part of the techniques shared by all of our participants, allowing 

them to analyse data (to develop/validate mathematical models), calculate parameters 

(to specify such models to particular situations), and understand mathematical 

models (either for validation purposes or to describe, explain, or predict real-world 

phenomena). As above, I elaborate on the praxeologies for one (the last) type of task.   

According to our applied participants, whenever they must explore the behaviour of 

the mathematical models they develop and/or study, programming (L5) is simply a 

necessity for pragmatic reasons: not only does it create tools capable of performing a 

massive number of calculations and varying parameters to consider different 

scenarios, but first and foremost it permits the simulation of models that lack analytic 

solutions. As Alice explains, “It's highly unlikely that a mathematical model will 

give you the quadratic formula in the end. It would be nice, but that doesn't happen. 

And so, computer programming is essential.” Though it was not emphasized by the 

applied group, the underlying epistemic character of programming is also clear: it is 

the visual and dynamic output generated by computer programs that enables the 

recognition of patterns leading to descriptions, explanations, or predictions.   

Given their pragmatic justifications, it is not surprising that all the applied 

researchers engage in programming at the highest level: L5. It may also not come as 

a surprise that we observed the least dramatic differences between the place of 

programming in research and in learning within this category. Still, there were some 

notable differences and interesting debates. Barbara’s students, for example, are not 

asked to develop their own programs. Instead, in addition to observing some results 

shown by their professor in class (L0), they are invited to receive explanations of her 

code (L2), manipulate her programs at the interface level (L1), and modify them (L3) 

to analyse different models. Barbara explains that “[she] want[s] [students] to see 

that programming isn't that bad. You can do lots of interesting stuff with just a few 

lines of code.” Through the proposed techniques, her students may learn more about 



  

programming itself (e.g., syntax and structure), and may come to appreciate the 

computer as a powerful tool. Having some insight into the code may also support 

their understanding of the corresponding output and models. Nevertheless, Barbara 

justifies their mid-level interactions by saying things like, “It wasn't so much how to 

program a vector field, it was how to use a vector field to understand the model.” Her 

ultimate goal is for students to understand models, not necessarily programming.  

 Task Type: Understand the behaviour of a mathematical model 

 Technique Justification 

Ben 

L5 + 

Experimentation 

(i.e., variation 

of parameters to 

observe 

different output)  

(1) Pragmatic: Otherwise impossible due to lack of analytic 

solutions and number of calculations/scenarios to consider  

(2) Epistemic: Visual/dynamic output for various parameter 

values enables descriptions, explanations, and predictions 

Ben’s 

Students 

(1) Pragmatic and (2) Epistemic as above, plus: L5 leads to 

deep understanding and control of the tool, output, and model 

Table 2: Ben’s research praxeology vs. the praxeology proposed to his students.  

In comparison, Ben believes that inviting students to do the programming (L5) might 

have a higher epistemic value. On the one hand, he suggests that “It’s very hard to 

write a program and not understand what it’s doing. You know, it’s a different level 

of comprehension.” On the other, he reflects on his experience asking students to 

manipulate a pre-developed program (L3): “It was an exercise in typing. They really 

didn’t know what it was doing or why it was doing it.” In Ben’s view, if students 

write their own programs, it is more likely that they will deeply understand the tool, 

enabling them to modify it according to their needs, more effectively interpret the 

results, and, by extension, better understand the models. Other mathematicians add 

that while constructing a program, students may come to better grasp the concepts, 

processes, and methods that they must structure into an algorithm and transpose into 

a programming language. Then, having created their own tool, students may feel a 

sense of empowerment and excitement that may further enhance their engagement 

and understanding. And finally, students may also gain more insight into elements of 

programming itself (e.g., algorithms, data structures, code efficiency) that could not 

only allow them to better understand and use existing software (previously “black 

boxes”), but also provide them with the knowledge required to develop their own 

tools in the future. After all, the more the power of programming is shifted into the 

hands of students, the more they may be convinced of the pragmatic value of such 

techniques. In sum, many mathematicians agree with Paul that “It's much better if the 

students can program it for themselves.” 

Once again, we may wonder: why doesn’t Barbara ask her students to develop their 

own programs? Throughout her interview, the professor complained that her 

university lacks a mandatory training in programming for math students and that the 



  

activity is not widely implemented by her colleagues; some of her students are even 

afraid of programming! In contrast, learning and using programming is integrated 

throughout the curricula for all math students in Ben’s department. But, as Ben 

explains, this systematic institutionalization of programming is not necessarily easy:    

There's a lot of inertia in Universities. [...] You don't just introduce something and it 

happens. [...] You introduce it one year, and everybody talks about it, and it's a no. And 

then there's lots of conversations about it [...] because you want people to have something 

that they truly need, and that has to evolve through discussion. 

Moreover, even after all the discussion, the institutional context may impose serious 

constraints. Alice, for example, works at a university where programming-based 

techniques are completely normalized. Yet, she feels she must settle for encouraging 

lower-level interactions (L4 or L3) because she does not have enough human 

resources to adequately grade students’ code; and in her view, “If it’s not assessed in 

detail, the requirement is shallow.” In the end, while programming (L5) may be part 

of the shared practices of applied mathematicians, institutions may render it only 

admitted within the community of students in applied math courses.  

SUMMARY AND CONCLUSIONS  

In 2014, Buteau et al. reported an intriguing gap: Of 302 mathematicians, 43% 

claimed to use programming in their research and only 18% said they use the activity 

in their teaching. In this paper, I presented some results of a qualitative study that 

sought to gain a deeper understanding of this situation. Our analysis of interviews 

with 14 mathematicians shows that “using programming” may be interpreted in 

significantly different ways. The word “programming” itself does not have the same 

meaning for every mathematician and future research could benefit from clarifying 

the boundaries of this activity. But in addition to this, when professors “use 

programming”, their students may actually interact with the activity on various 

levels, from strictly observing the results of programs (L0) to independently 

developing their own computer tools (L5). The identification of six levels led us to 

note important differences between the practices of individual mathematicians and 

those they propose to their students, suggesting that the gap highlighted by Buteau et 

al. (2014) may actually be greater and more complex than expected. Even if 

programming (L5) may be shared or admitted within applied or pure research 

communities, respectively, it may be admitted or contested within applied or pure 

learning communities. Adding to previous predictions as to why such gaps might 

occur, our participants spoke of different kinds of institutional constraints: curricular 

(objectives, prerequisites, time), departmental (academic freedom vs. coordination, 

class size vs. human resources), and cultural (deep-rooted traditions in mathematics). 

And yet, they spoke equally of the potential benefits of bridging the gaps. Not only 

might it encourage techniques of high epistemic value or make students aware of the 

pragmatic character of programming, but it may also be important for social/cultural 



  

reasons: Programming may widen students’ vision and appreciation of all 

mathematical activity, while also encouraging the development of mathematician-

like practices that could diversify their options beyond their undergraduate degree. 

Of course there is the question of the actual experiences of students, which we have 

not yet addressed: what benefits (and obstacles) do students actually experience 

while programming? Or, more critically, what are the benefits (and obstacles) of each 

programming level? After all, any level might be required in doing mathematics, 

whether due to collaborations (recall Paul’s research practices) or the development 

and sharing of tools, which constitutes another category of practices we identified. 

Indeed, our participants mentioned observing their colleagues’ results (L0), using 

other programs (L1), making sense of existing code (L2), or even reworking such 

code (L3). I hope to pursue a deeper analysis of these different levels in future 

research. In the meantime, it is important to note that all 14 of our participants 

believe that while programming should not constitute the essential element of 

undergraduate mathematics, it should receive more attention than it does in current 

Canadian curricula. A path towards change may not yet be clear, nor may it be easy; 

but the shared perspectives of our participants lead us to conclude that it exists!  
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