

The place of computer programming

in (undergraduate) mathematical practices

Laura Broley

Concordia University in Montréal, Department of Mathematics and Statistics,

Canada, l_brole@live.concordia.ca

A recent survey of Canadian mathematicians found that while 43% of the

participants use computer programming in their research, only 18% integrate this

activity into their teaching. The first statistic highlights the significant place that

programming may have in professional mathematics practice. The second suggests

that such significance may not yet be acknowledged in undergraduate curricula

across Canada. Our exploratory study involving 14 Canadian mathematicians

sought to gain a deeper understanding of the place of programming in both contexts

and therefore describe the gap from a more qualitative perspective. The views of our

participants highlight some important issues that may require attention in order to

bridge the identified gaps, should that be deemed the favourable direction to take.

Keywords: Mathematical practices, undergraduate teaching and learning, computer

programming, institutional constraints.

INTRODUCTION

Several mathematicians and researchers in math education have reported on the

disconnection between undergraduate curricula and professional practice. A recent

quantitative survey of 302 Canadian mathematicians points to one possible aspect of

the gap: while 43% of the participants reported using computer programming in their

research, only 18% indicated that they rely on this activity in their teaching (Buteau,

Jarvis, & Lavicza, 2014). Furthermore, when compared to the other technologies

surveyed, programming was the only one for which such a gap was observed.

Figure 1: An intriguing gap for programming identified by Buteau et al., 2014.

The first statistic highlights the potential that programming may have for doing

mathematics and the possible relevance of integrating it into university courses. The

second inspires further research: why would such a gap exist? Buteau et al. (2014)

predict that the learning curve for programming is greater than for other tools such as

computer algebra systems (e.g., Mathematica). They also mention the logistical

obstacles of curriculum-wide integration. We were unaware of studies that verified

these hypotheses or explored other possible explanations, while providing an in-

depth look at how the 43% and 18% of mathematicians might be using programming

in their research and teaching respectively. We hence wondered: what is the place of

programming in mathematical research and undergraduate math education?

A FRAMEWORK FOR CAPTURING AND COMPARING PRACTICES

Our research question, posed as is, raises a subtle issue: since education contains two

distinct perspectives, the teacher’s and the student’s, which should we take? After

speaking with mathematicians, it appeared that many of them do not see fundamental

similarities between the acts of teaching and researching. In contrast, we might

assume that student experience should reflect mathematicians’ work. We therefore

decided that a comparison of research practices with learning practices (as opposed

to teaching practices) could not only be more interesting, but also more important.

To be able to capture and compare such practices, we turned to Chevallard’s (1998)

Anthropological Theory of the Didactic (ATD), which provides a model for

apprehending the various elements of mathematical activity that occur in any context

(in this case, professional and educational). According to the ATD, an individual’s

“practices” are understood through the notion of “praxeology”, which takes into

account the know-how (the praxis) and the discourses (the logos) that describe,

legitimise, explain, and produce the praxis. The praxis contains two components:

tasks (things to accomplish) and techniques (methods used to accomplish the tasks).

Similarly, the logos can be divided into several levels: Chevallard (1998)

distinguishes between technologies (justifications for the techniques) and theories

(foundations underlying the technologies). Following the example of Artigue (2002),

we have chosen to avoid the ambiguity of the word “technology” and label any logos

as a “justification”. We will also classify different types of justifications, such as

those that are pragmatic (concerning the productive potential of a technique) and

those that are epistemic (concerning the potential of a technique to contribute to the

understanding of the objects involved). As Artigue (2002) suggests, the place of

certain techniques within an institution could depend on such justification types.

This leads us to another crucial aspect of the ATD: individuals’ practices are framed

by the social institutions where they live. Under the influence of institutional

constraints, certain practices are normalized. Conversely, an increased acceptance of

new practices can cause a reevaluation of constraints. To describe the variable status

of practices within institutions, we use Morrissette’s (2011) characterization of

1. Shared Practices, which are intimately tied to a profession and remain unquestioned;

2. Admitted Practices, which are not shared by everyone in a profession, but are accepted

because they have been shown to be effective by innovative practitioners; and

3. Contested Practices, which are not accepted by everyone and are therefore situated at

the boundaries of the professional culture.

METHODOLOGICAL CONSIDERATIONS

To gain a deeper understanding of how programming is integrated into the practices

of mathematicians and their students, we carried out an exploratory study involving

individual semi-directed interviews with 14 mathematicians: 3 women and 11 men of

various ages, languages (French or English), and research domains, working within

10 universities in 3 Canadian provinces (British Columbia, Ontario, and Québec).

The structure of our interviews, captured in a written guide, was largely inspired by

Vermersch’s (2006) entretien d’explicitation. This model considers the actions of an

individual as the main source of reliable information regarding the reasoning

involved in those actions (different from the reasoning adopted outside of the

actions). Hence, the interviewer is mainly a guide who tries to lead the interviewee

into a state of descriptive verbalisation, where they “relive” specific experiences. Our

participants were encouraged to relive moments throughout their research and

teaching, in relation to computer programming. Some chose to share resources they

had developed (e.g., computer programs and activity outlines), which enhanced their

descriptions. Nevertheless, some general reflections on mathematics, programming,

and institutional constraints were also solicited from the participants.

Interviews were recorded and transcribed. We then performed a categorical analysis

(Van der Maren, 1996), using a mixed coding approach to identify, classify, and

compare the main ideas. Examples of programming use underwent a supplementary

characterisation using Chevallard’s (1998) framework in order to extract the types of

tasks, techniques, and justifications that define research and learning practices.

CLARIFICATION OF A DEFINITION

At the beginning of our project, we were surprised at how difficult it was to develop

a definition of “computer programming”. First of all, there was no clear agreement

on what constitutes “programming” within the literature we had read. Secondly, we

could not decide which kinds of activities to consider in our definition. It was clear

that numerically solving a system of differential equations by developing a new

method, writing some code, and ensuring the correct functioning of the resulting

program should be seen as involving “programming”; but which steps exactly?

Additionally, how should we classify activities such as the use of a computer algebra

system to calculate a particularly difficult integral? Previous studies (e.g., Buteau et

al., 2014) have distinguished between computer algebra systems and programming

languages; but we can just as easily write a program in Mathematica as in C++.

In hopes that our participants could help us circumscribe “programming” in the

context of mathematics, we left the interpretation of this word up to them. From the

perceptions that emerged, we identify programming as an activity that aims to

construct a computer tool (a program) by way of three nonlinear tasks of varying

importance: the development of an algorithm, the coding of the algorithm, and the

verification and validation of the program. Still, there was no unanimity on the sorts

of activities that correspond to the completion of these tasks. While some questioned

whether or not using library routines in Mathematica really was “programming”,

others proudly described examples of this type that allowed them to make major

advances in their research. At times interviewees would take an even larger

perspective, wondering, for example, whether or not geometric constructions in

Geometer’s Sketchpad could be classified as “programming”. Other times, they were

more restrictive, reducing programming to the task of writing code. While most

participants recognized a mathematical character in programming, comparing it to

solving a problem or constructing a proof, they also tended to restrict the whole

activity to the status of a technique for accomplishing more important research tasks.

THE PLACE OF PROGRAMMING IN MATHEMATICAL PRACTICES

Based on the experiences described by our participants, we characterized several

research and learning practices that may involve programming. What was

particularly interesting was the varying degree to which programming (as we have

just defined it) could be involved. Our analysis led us to identify six levels on which

mathematicians or students may interact with programming: they may

L0: Strictly observe the results of a computer program;

L1: Manipulate the interface of a program;

L2: Observe the code of a program;

L3: Modify the code of a program;

L4: Construct the code of a program, with elements (e.g., the algorithm) specified; or

L5: Develop a program, including algorithm development, coding, and verification.

The higher the level, the more the programming activity becomes visible and the

more the mathematician or student becomes active in it. The identification of these

levels allowed us to make important comparisons between the practices of a given

mathematician and those intended to be developed by his/her students. In what

follows, I restrict myself to an insightful selection of these practices, organized into

two naturally-arising categories: “pure” and “applied” problem solving.

“Pure” problem solving and the cases of Omar and Paul

This category refers to when a mathematician or mathematics student seeks to

develop abstract mathematical knowledge, the former contributing directly to the

discipline and the latter supporting the personal education of the student. In both

contexts, a main type of task where programming may be involved is the discovery

of concepts, properties, or theories, typically realized through an Exploration Cycle

including the observation of mathematical objects and the formulation/verification of

conjectures. Our study shows that the place of programming within the associated

praxeologies may differ significantly for mathematicians and their students.

 Task Type: Discover mathematical concepts, properties, or theories

 Technique Justification

Omar

L5 + Exploration Cycle

until “sufficient”

evidence collected

(1) Epistemic: Gain insight to formulate conjectures

and confidence to proceed to proof

(2) Pragmatic: Organization, precision, speed,

adaptability, and reusability of programs

Omar’s

Students

L0 + Guided/ Limited

Exploration Cycle

in class

Epistemic: Have intuition challenged and abstract

theory rendered concrete, exciting, and memorable

Pragmatic as above, but from professor’s perspective

Table 1: Omar’s research praxeology vs. the praxeology proposed to his students.

Like several of the pure mathematicians I interviewed, Omar often develops his own

computer tools (L5) to collect evidence about the behaviour of the abstract objects he

studies. He proceeds through an Exploration Cycle to first gain the insight necessary

to formulate plausible conjectures and then build confidence in their truth. He

justifies his technique principally in an epistemic fashion, exclaiming, for example,

“Before starting to prove something, you'd better know it's true beyond a doubt!”

Nonetheless, the pragmatic character of his programming is undeniable: he is free to

control every aspect of his exploration, extend it to any number of otherwise tedious

or impossible examples, and adapt his tool for completing future research tasks.

Given his familiarity with creating programs to assist in his own discovery of

mathematics, it is not surprising that Omar, like many of our participants, also

develops tools within the context of his teaching to support his students’

understanding of challenging notions (e.g., spanning sets and linear independence).

From the student’s point of view, however, the proposed praxeology is quite

different from their professor’s: Omar’s linear algebra students are invited solely to

observe the dynamic images produced by their professor (L0), are prompted to make

conjectures, and are provided images that verify or refute their voiced conjectures.

Their exploration is heavily guided and limited to the time available in class, and the

programming activity remains completely inaccessible to them. The fact that Omar

does not share his programs with his students parallels the way he (and other pure

mathematicians) communicate their research results: once they have arrived at a

theorem and its proof, they typically see no need to discuss the programming that

assisted their exploratory work. Similarly in teaching, Omar sees no need to

encourage further exploration with a program once he believes the main goal of

student discovery has been achieved. Indeed, he emphasizes the epistemic quality of

the proposed technique, claiming that observing carefully chosen computer-

generated results enables students to have their intuitions challenged and the abstract

theories they’re learning rendered more concrete, interesting, and memorable. When

he attributes a pragmatic value to the technique, it is in relation to himself: the

examples he generates would be difficult, if not impossible, to reproduce on a board,

and he would not have the same flexibility of re-executing programs in response to

the needs of his students. A summary of Omar’s research praxeology and the

counterpart praxeology he proposes to his students is given in Table 1.

Paul is a probability professor whose table of praxeologies would differ from Omar’s

table in terms of techniques and justifications. In his research projects that require

the use of computer tools, he always remains at L0 or L1; the programming is done

by a collaborator. And yet, he encourages his students to write and use their own

programs (L4 or L5). Like Omar, Paul brings forth principally epistemic

justifications; the difference is his claim that

It's much better if the students can program it for themselves. If they're sitting in front of

the screen and they can play with it and they can adjust parameters, it becomes a kind of a

game and it's more interactive for them. And it's better than me just showing them a

picture at the front of the classroom.

We will return to this idea that higher-level interactions may have greater epistemic

value. For now, this claim naturally raises the question: so, why doesn’t Omar invite

his students to develop their own programs?

Ironically, it is Paul who provides an enlightening story for framing the response to

this question. It turns out that the probability course described above is geared

towards science students; for math majors, computer technology is completely

absent. Of course, there are many ways to “Discover mathematical concepts,

properties, or theories”, and Paul’s pure math students are encouraged to adopt more

traditional techniques. Upon reflecting on the addition of programming, Paul

concluded: “I think it's the right way to go actually. I think that we're missing an

opportunity here.” So, why not take the opportunity? At first, Paul discussed

curricular constraints: the pure math students may not have the prerequisite

knowledge needed for programming and it would take a great deal of time to develop

and integrate new activities into an already jam-packed well-defined curriculum.

Omar also explained that “There’s so much material in [his] course that it seems like

it would be an exaggeration to ask them to program as well […] But, if we had more

time, well it would be nice.” Since Paul already overcame curricular obstacles during

the transformation of the probability course for science students, it would seem like

something deeper is at play. Indeed, he eventually revealed that “Academia is a very

conservative place. And there's a huge amount of inertia. And there's also a huge

amount of independence among the different instructors.” He added: “I don't hear a

lot of people talking about this being a great idea.” Omar elaborated on similar

constraints imposed within his institution: “I realize that my department is very

abstract […] And the students in pure math love that. But I believe it limits some of

their abilities that are absolutely essential if they want to become researchers.”

As reflected in this quote, the pure mathematicians in our study view programming

(L5) as admitted amongst them and their colleagues. Phillippe summarizes their

perspectives when he says that “Programming is really one tool among many others

to do mathematics […] that is not necessary, but that is useful.” Why then is

programming still deemed by some departments as contested for pure math students?

In the past, some mathematicians (e.g., Bailey & Borwein, 2005) have implied that

computer-based techniques were contested within the pure math community. Our

participants point out that many Canadian universities are still anchored in this

traditional culture that favors the chalk-and-talk paradigm and by-hand exercises.

“Applied” problem solving and the cases of Barbara and Ben

The institutionally-driven introduction of programming in Paul’s probability course

for science students is likely related to the importance attributed to programming in

the “applied” math community. As Barbara suggests, “It's absolutely indispensable

for applied mathematicians.” When it comes to solving “real-world” problems,

programming is part of the techniques shared by all of our participants, allowing

them to analyse data (to develop/validate mathematical models), calculate parameters

(to specify such models to particular situations), and understand mathematical

models (either for validation purposes or to describe, explain, or predict real-world

phenomena). As above, I elaborate on the praxeologies for one (the last) type of task.

According to our applied participants, whenever they must explore the behaviour of

the mathematical models they develop and/or study, programming (L5) is simply a

necessity for pragmatic reasons: not only does it create tools capable of performing a

massive number of calculations and varying parameters to consider different

scenarios, but first and foremost it permits the simulation of models that lack analytic

solutions. As Alice explains, “It's highly unlikely that a mathematical model will

give you the quadratic formula in the end. It would be nice, but that doesn't happen.

And so, computer programming is essential.” Though it was not emphasized by the

applied group, the underlying epistemic character of programming is also clear: it is

the visual and dynamic output generated by computer programs that enables the

recognition of patterns leading to descriptions, explanations, or predictions.

Given their pragmatic justifications, it is not surprising that all the applied

researchers engage in programming at the highest level: L5. It may also not come as

a surprise that we observed the least dramatic differences between the place of

programming in research and in learning within this category. Still, there were some

notable differences and interesting debates. Barbara’s students, for example, are not

asked to develop their own programs. Instead, in addition to observing some results

shown by their professor in class (L0), they are invited to receive explanations of her

code (L2), manipulate her programs at the interface level (L1), and modify them (L3)

to analyse different models. Barbara explains that “[she] want[s] [students] to see

that programming isn't that bad. You can do lots of interesting stuff with just a few

lines of code.” Through the proposed techniques, her students may learn more about

programming itself (e.g., syntax and structure), and may come to appreciate the

computer as a powerful tool. Having some insight into the code may also support

their understanding of the corresponding output and models. Nevertheless, Barbara

justifies their mid-level interactions by saying things like, “It wasn't so much how to

program a vector field, it was how to use a vector field to understand the model.” Her

ultimate goal is for students to understand models, not necessarily programming.

 Task Type: Understand the behaviour of a mathematical model

 Technique Justification

Ben

L5 +

Experimentation

(i.e., variation

of parameters to

observe

different output)

(1) Pragmatic: Otherwise impossible due to lack of analytic

solutions and number of calculations/scenarios to consider

(2) Epistemic: Visual/dynamic output for various parameter

values enables descriptions, explanations, and predictions

Ben’s

Students

(1) Pragmatic and (2) Epistemic as above, plus: L5 leads to

deep understanding and control of the tool, output, and model

Table 2: Ben’s research praxeology vs. the praxeology proposed to his students.

In comparison, Ben believes that inviting students to do the programming (L5) might

have a higher epistemic value. On the one hand, he suggests that “It’s very hard to

write a program and not understand what it’s doing. You know, it’s a different level

of comprehension.” On the other, he reflects on his experience asking students to

manipulate a pre-developed program (L3): “It was an exercise in typing. They really

didn’t know what it was doing or why it was doing it.” In Ben’s view, if students

write their own programs, it is more likely that they will deeply understand the tool,

enabling them to modify it according to their needs, more effectively interpret the

results, and, by extension, better understand the models. Other mathematicians add

that while constructing a program, students may come to better grasp the concepts,

processes, and methods that they must structure into an algorithm and transpose into

a programming language. Then, having created their own tool, students may feel a

sense of empowerment and excitement that may further enhance their engagement

and understanding. And finally, students may also gain more insight into elements of

programming itself (e.g., algorithms, data structures, code efficiency) that could not

only allow them to better understand and use existing software (previously “black

boxes”), but also provide them with the knowledge required to develop their own

tools in the future. After all, the more the power of programming is shifted into the

hands of students, the more they may be convinced of the pragmatic value of such

techniques. In sum, many mathematicians agree with Paul that “It's much better if the

students can program it for themselves.”

Once again, we may wonder: why doesn’t Barbara ask her students to develop their

own programs? Throughout her interview, the professor complained that her

university lacks a mandatory training in programming for math students and that the

activity is not widely implemented by her colleagues; some of her students are even

afraid of programming! In contrast, learning and using programming is integrated

throughout the curricula for all math students in Ben’s department. But, as Ben

explains, this systematic institutionalization of programming is not necessarily easy:

There's a lot of inertia in Universities. [...] You don't just introduce something and it

happens. [...] You introduce it one year, and everybody talks about it, and it's a no. And

then there's lots of conversations about it [...] because you want people to have something

that they truly need, and that has to evolve through discussion.

Moreover, even after all the discussion, the institutional context may impose serious

constraints. Alice, for example, works at a university where programming-based

techniques are completely normalized. Yet, she feels she must settle for encouraging

lower-level interactions (L4 or L3) because she does not have enough human

resources to adequately grade students’ code; and in her view, “If it’s not assessed in

detail, the requirement is shallow.” In the end, while programming (L5) may be part

of the shared practices of applied mathematicians, institutions may render it only

admitted within the community of students in applied math courses.

SUMMARY AND CONCLUSIONS

In 2014, Buteau et al. reported an intriguing gap: Of 302 mathematicians, 43%

claimed to use programming in their research and only 18% said they use the activity

in their teaching. In this paper, I presented some results of a qualitative study that

sought to gain a deeper understanding of this situation. Our analysis of interviews

with 14 mathematicians shows that “using programming” may be interpreted in

significantly different ways. The word “programming” itself does not have the same

meaning for every mathematician and future research could benefit from clarifying

the boundaries of this activity. But in addition to this, when professors “use

programming”, their students may actually interact with the activity on various

levels, from strictly observing the results of programs (L0) to independently

developing their own computer tools (L5). The identification of six levels led us to

note important differences between the practices of individual mathematicians and

those they propose to their students, suggesting that the gap highlighted by Buteau et

al. (2014) may actually be greater and more complex than expected. Even if

programming (L5) may be shared or admitted within applied or pure research

communities, respectively, it may be admitted or contested within applied or pure

learning communities. Adding to previous predictions as to why such gaps might

occur, our participants spoke of different kinds of institutional constraints: curricular

(objectives, prerequisites, time), departmental (academic freedom vs. coordination,

class size vs. human resources), and cultural (deep-rooted traditions in mathematics).

And yet, they spoke equally of the potential benefits of bridging the gaps. Not only

might it encourage techniques of high epistemic value or make students aware of the

pragmatic character of programming, but it may also be important for social/cultural

reasons: Programming may widen students’ vision and appreciation of all

mathematical activity, while also encouraging the development of mathematician-

like practices that could diversify their options beyond their undergraduate degree.

Of course there is the question of the actual experiences of students, which we have

not yet addressed: what benefits (and obstacles) do students actually experience

while programming? Or, more critically, what are the benefits (and obstacles) of each

programming level? After all, any level might be required in doing mathematics,

whether due to collaborations (recall Paul’s research practices) or the development

and sharing of tools, which constitutes another category of practices we identified.

Indeed, our participants mentioned observing their colleagues’ results (L0), using

other programs (L1), making sense of existing code (L2), or even reworking such

code (L3). I hope to pursue a deeper analysis of these different levels in future

research. In the meantime, it is important to note that all 14 of our participants

believe that while programming should not constitute the essential element of

undergraduate mathematics, it should receive more attention than it does in current

Canadian curricula. A path towards change may not yet be clear, nor may it be easy;

but the shared perspectives of our participants lead us to conclude that it exists!

REFERENCES

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a

reflection about instrumentation and the dialectics between technical and

conceptual work. International Journal of Computers for Mathematical Learning,

7, 245-274.

Bailey, D.H. & Borwein, J.M. (2005). Experimental mathematics: Examples,

methods and implications. Notices of the AMS, 52(5), 502-514.

Broley, L. (2015). La programmation informatique dans la recherche et la formation

en mathématiques au niveau universitaire (Unpublished master’s thesis).

Université de Montréal, Montréal. Supervised by F. Caron and Y. Saint-Aubin.

Buteau, C., Jarvis, D., & Lavicza, Z. (2014). On the integration of computer algebra

systems (CAS) by Canadian mathematicians: Results of a national survey.

Canadian Journal of Science, Mathematics, & Technology Education, 14(1), 1-23.

Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des

mathématiques : L'approche anthropologique. Retrieved from yves.chevallard.

free.fr/spip/spip/IMG/pdf/Analyse_des_pratiques_enseignantes.pdf

Morrissette, J. (2011). Vers un cadre d'analyse interactionniste des pratiques

professionnelles. Recherches qualitatives, 30(1), 10-32.

Van der Maren, J. (1996). Le codage et le traitement des données. In Méthodes de

recherche pour l'éducation (pp. 427-457). Montréal/Bruxelles: PUM et de Boeck.

Vermersch, P. (2006). L'entretien d'explicitation. Paris, France: ESF éditeur.

