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We present the design process of a Study and Research Path (SRP) in a course of 
General Elasticity, which is part of a degree in Mechanical Engineering. General 
Elasticity is a field in which mathematical modelling is very much present. In fact, it 
cannot be conceived without mathematics. We take the observation of several didactic 
facts associated to the actual pedagogical and didactical organization of the course as 
starting point. The SRP design tries to overcome these didactical problems by 
proposing a possible new rationale for teaching General Elasticity.  

We have carried out an a priori analysis of the SRP in order to evaluate to what extent 
the generating question is substantial enough to act as the main motivation of the study 
community. A systematic plan to collect data during experimentation is also presented. 
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MATHEMATICS AS A SERVICE SUBJECT: MODELLING  

The central point of our research is the role played by mathematics in engineering 
courses, more particularly those with a high load of mathematics. The paper presents 
the design of a Study and Research Path (SRP) in a third-year General Elasticity course 
of a Mechanical Engineering Degree.  

In this context, the third ICMI study (Howson et al 1988) presents different reflections 
on mathematics as a service subject. One of the central ideas of the different papers of 
the study is that teaching mathematics to non-mathematicians (as a service subject) 
should highlight the capacity of mathematics to solve the practical problems of the 
domain. This “capacity to solve the problems of the domain” is closely related to the 
ability of mathematics to model systems of the domain and, consequently, to solve the 
problems associated (Romo, 2014).  

The integration of mathematical modelling into current educational systems has been 
tackled by numerous investigations but still remains a major challenge. Many examples 
of mathematical modelling in various domains of engineering education exist: 
modelling acoustic properties of materials (Hernández, Couso, & Pintó, 2014) or the 
works of engineering teaching in US high schools (English & Mousoulides, 2011). 
Numerous theoretical approaches agree on the need to incorporate mathematical 
modelling in mathematics and engineering teaching in consequence. As a result, some 
new curricular approaches try to introduce mathematical modelling in certain some 
university degrees (Gould, Murray, & Sanfratello, 2012) (Dangelmayr & Kirby, 2003). 
Some studies consider that mathematics in engineering play such an important role that 



  

engineering could not exist without them. Because of this strong interdepence between 
mathematics and engineering the classical modelling cycle approach cannot be applied 
in this case (Bihler, Kortemeyer, & Schaper, 2015). 

However, many institutional constraints and limitations appear when designing and 
implementing modelling devices in university teaching institutions (Barquero, Bosch, 
& Gascón, 2010). The institutional ecology plays a crucial role in the study of these 
conditions and constraints. The Anthropological Theory of the Didactic (ATD) 
framework enables us to describe these conditions and constraints affecting the 
implementation of mathematical modelling in scholar institutions, especially at 
university level. The necessary conditions for mathematical modelling at the 
undergraduate level have been studied in the case of first-year students of a business 
administration degree (Barquero, Serrano, & Serrano, 2013).  

Mathematical modelling appears to be central in the ATD framework: the ATD 
postulates that “most of the mathematical activity can be identified to some extent […] 
with a mathematical modelling activity” (García, Gascón, Ruiz, & Bosch, 2006). This 
means that mathematical activity can only be understood as a collective modelling 
activity. The modelling activity in the ATD framework is not limited to non-
mathematical systems but includes intra-mathematical modelling as a key notion. 
Algebraic modelling of geometry can be seen as an example of this intra-mathematical 
modelling.  

Garcia et al. (2006) state that the modelling process emerges from an initial generating 
question: from this starting point the collective work will generate a collective answer 
to the question. This answer can be seen as a sequence of interconnected praxeologies. 
Intra- or extra- mathematical models play a central role: models are used to obtain 
results and to understand the modelled phenomena. 

WHY A STUDY AND RESEARCH PATH IN AN ELASTICITY COURSE? 

Beyond the mathematical role played by mathematics as a service subject and the 
importance of mathematical modelling, a second motivation justifies the adoption of a 
SRP for the General Elasticity course. Until the last academic year this course was 
structured in mixed theory and problem sessions, and practical sessions. The latter 
included six 2-hour sessions on the following topics:  

•  Tensile test in three different metals (AISI 304 Stainless Steel, SR 275 Structural 
Steel and T6061 Aluminium). 

•  Charpy test in three different metals (AISI 304 Stainless Steel, SR 275 Structural 
Steel and T6061 Aluminium). 

•  Finite Element Method (FEM) simulation of a tensile test (using SolidWorks™ 
simulation as software). 

•  Oral presentation about failure criteria in different family materials. 

During the practical sessions in the past two academic years three didactic facts were 
observed. First, a thematic autism in the sense of Barbé et al (2005) explicitly appeared. 



  

This means that all four activities were ‘lived’ as independent by the students even if 
the activities were closely connected. For example: FEM simulation (3rd session) 
simulated the real test carried out in the 1st session. The second didactic fact is related 
to the role played by the computer during the FEM simulation. Students introduced 
geometrical data, loads and meshing conditions to obtain the required results. 
Important difficulties appeared when they tried to understand “how the computer 
solved the problem” and “validating the results obtained”. The students tended to 
validate all the results without any validating process. Both factors can be understood 
as a “black box” phenomenon: computer simulation is not understood by students and 
thus hinders them when judging the adequacy of the results obtained. And thirdly, we 
detected a clear absence of rationale in the four practical sessions. Both for students 
and for lecturers the presence of these sessions was more due to its “classical” character 
in elasticity than to a well-founded and justified didactic choice.  

It seems that the adoption of a SRP based on a substantial enough generating question 
may partially overcome these limitations. The choice of the generating question 
emerges from the question “Why is General Elasticity taught in engineering?” which 
necessarily leads to the missing rationale. Once this question is posed, it is clear that 
the main reason to teach the subject is to provide engineers with tools enabling them 
to design any part of a machine working under an elastic regime. The connection 
between themes comes up immediately. To begin with a specific issue, the two 
lecturers teaching the subject agreed to start the SRP with the generating question: 
“How to choose one material (with unknown mechanical properties) from a set of three 
and design a part for a bike given in advance (brake lever, crank, gear, and bike lock 
key)?” 

PROFESSIONAL PRACTICE FOR ENGINEERS 

Some approaches, state that mathematical education as a service subject in the 
engineering context should also take into account the professional practice of the 
collective addressed. Two studies in particular highlight the role played by 
mathematical modelling in the professional practice of engineers (Kent and Noss, 
2003) (Gainsburg, 2006). Both studies consider mathematical modelling as a 
paramount in the professional practice if engineers. However Gainsburg (2006) claims 
some crucial aspects of mathematical modelling needed to be taken into account. 
Firstly, she states that the “centrality” of mathematical modelling in professional 
practices is not identified in all research works. Gainsburg states that this phenomenon 
may be caused because many studies:  

...focus on solution-generating activity (or even, ironically, on the comparison with school-
type math) has prevented these researchers from detecting and reporting other activities 
that might count as modelling such as describing, interpreting and explaining quantitative 
relationships and patterns, making predictions or developing reusable solution methods. 
(Gainsburg, 2006, p 6). 



  

The second aspect highlighted by Gainsburg and Kent & Noss is that the development 
of mathematical models is usually carried out by mathematics specialists and that the 
use of these models rarely calls for advanced calculation techniques. For example, civil 
engineers use basic mathematics 95% of the time: multiplication, division and 
understanding of statistics (Kent & Noss, 2003). 

A third aspect to be taken into account is the important variety of models mobilised by 
engineers depending on the degree of abstraction. Engineers are usually able to work 
with received models but in some specific cases (because of their complexity or 
uniqueness) the model has to be adapted to the local reality: an adaptation process is 
left to the engineer. In this case, two particular challenges emerge: on the one hand 
practitioners have to understand the phenomenon to be modelled (which usually 
remains inaccessible to the engineers) and on the other hand the model has to be kept 
in track (practitioners have to be explicitly aware of the assumptions and hypotheses 
of the model used). 

The last aspect addressed by both studies is the preponderant role computers play in 
the professional practice of engineers. Both studies agree that computers have caused 
profound changes in the professional practice of engineers. These computer-based 
technologies seem to have reduced routine calculations but increased the need to solve 
more complicated, non-routine problems. In addition, a new phenomenon might 
appear: the “black box” effect we mentioned earlier. That is why only the input to the 
computer and the given output are explicit and the calculations done by the computer 
remain implicit. This implicitness makes it difficult for the users of computer 
simulation to question the results obtained. 

GENERAL ELASTICITY COURSE 

Taking into account the different aspects presented in the previous sections a SRP on 
general elasticity has been designed and it will be experimented in two big groups 
(between 20 and 25 students) in September 2015 and January 2016. One of the groups 
will be taught by one researcher in didactics and the other one by a teacher with no 
didactic training. The students will work in the mechanical laboratory during eight 2-
hour sessions. The laboratory is equipped with a universal tensile test machine, a 
Charpy test machine, computers with simulation software and two 3D-printers. Each 
large group of students will be divided in groups of 4 or 3 students: each small group 
will have one specific part to be designed.  

Each group is asked to design a specific part of a bike. At the end of the eight sessions 
they will be asked to write a final report addressed to a fictional “bike design 
company”. The report must include: 

 Specific dimensions of the part including its dimensional plans, 
 Estimated loads 
 Justification of the choice of the material 
 Estimated strains that it will suffer  while being used 
 The adopted safety factor for stresses and strains 



  

 Justification of the results regarding the computer simulation and the 
mathematical model used  

 Final cost of the whole design process calculated by using the prices in table 1. 
If the students decide to carry out another test that is not available in the 
laboratory (and in the price list) a price will be decided by the teacher as long 
as its adequacy is justified by the group.  

The requirement of explicitness of these aspects are expected to partially “enlighten” 
the existing “black boxes” such as computer simulation and mathematical models.   

During the first session each small group of students receives three samples of different 
metallic materials, whose mechanical properties are totally unknown to the students. 
Then students are asked to write a first partial report that will be delivered after the first 
week. It shall include: 

 Time planning for the whole design phase 
 Initial budget 
 First questions that have emerged and that are planned to be solved during the 

following week. 

After this first report, a weekly report will be generated by the students. The content of 
the weekly reports is intended to collect data from the dynamics of the activity. In order 
to collect this kind of data the proposed content was: 

 An updated time planning 
 The questions that the team planned to ask during the week 
 A description of the tasks carried out even if obtaining wrong results 
 The obtained and validated answers that they have obtained (and how) from the 

questions of the week and derived questions.  
 New questions for the next  

 

Test / Material Price 

Tensile test 75 €/specimen 

Hardness test 170 €/specimen 

3d printer 0,25 €/printed cm3 

Engineer 50 €/h 

Computer Amortization 
(including software 
licences) 

1,25 € / h 

Charpy test 85 €/specimen 

Specimen  5 € 

Table 1: Price table for different operations 



  

EXPECTED MOBILIZED KNOWLEDGE 

As an a priori analysis of the SRP, we have studied what kind of knowledge is expected 
to emerge when the students work on the design process. As a partial representation of 
this mobilised knowledge a question-answer map has been used (Figure 1). This tool 
was already used when modelling knowledge geneses from a generating question 
(Winsløw, Matheron, & Mercier, 2013) (Jessen, 2104).  

From a mathematical point of view, the model used (generalized Hooke’s Law) in 
general elasticity concern the use of tensors as well as their diagonalization and the 
eigenvectors and eigenvalues associated. In fact, the stress level of a point of a solid is 
characterized by a symmetrical stress tensor including three normal stresses and three 
shear stresses. The strains in a point are also characterized by a symmetrical strain 
tensor (formed by 3 normal strains and 3 shear strains). Both tensors are related (under 
an elastic regime) by the generalized Hooke’s Law. Diagonalization of both tensors is 
a crucial point for two reasons. First it is a matter of economy: the stress level of a 
point, when diagonalized, is described by only 3 scalars (instead of 6). Secondly, the 
principal stresses and strains delimit all the possible tensional states and provide the 
conditions for failure. 

Apart from mathematical knowledge many others aspects are expected to emerge. One 
aspect expected to appear is related to the need to estimate loads in order to feed the 
computer simulation as well as to establish the safety factor for the stresses and strains 
obtained. A second aspect is related to the use and limitations of the computer because 
the students have not done any previous course on FEM simulation. A FEM course is 
available for students as a four year subject.  

Time planning and budgeting are aspects that usually remain outside the scholar 
knowledge related to General Elasticity but they are very much present at the 
professional practice of engineers. This is the main reason why students are asked to 
create and update on a weekly basis and to manage a limited budget defined in the first 
session. 

Another aspect that has been considered in this a priori analysis is the mesogenetic 
level, specifically the media – milieu dialectics. The SRP has been designed in order 
to enrich the sources of information and the validation devices used by the students. 
The design of a bike part will ask students to validate its shape design, the choice of 
the material as well as the level of acceptable strains. The devices that students will 
choose validate these decisions are expected to enrich the milieu of the students 
comparing it with the previous sessions where any validation was used further than 
teacher’s correction.  

DATA COLLECTING PLAN 

In order to collect all relevant data systematically a data collecting plan has been 
designed. First of all, the weekly reports of each group appear as a key document to be 
analysed. We expect these reports to include a wide range of information from both a 



  

pedagogical and didactic level including practical aspects (such as organizational 
issues) to content-related aspects (such as the chronogenesis: question – answer 
dynamics).  

As part of the plan a set of interviews will be included in the collected data. Three 
actors of the SRP will be interviewed: the non-researcher teacher, new students, and 
students retaking the subject. In fact, the opinion of the non-researcher teacher and of 
the students retaking the subject are particularly significant because they ‘lived’ the 
practical sessions when the didactical facts presented in the second section where 
observed. 

Finally the students will fill out a survey evaluating the most difficult and easy aspects 
faced during the project, to what extent the project helped them integrate the different 
parts of the subject and which strong points and weak points they identified during the 
course.  

EXPECTED RESULTS 

The first aspect to be considered is how the expected articulation of different fields of 
knowledge has been reached. The main tool to evaluate this articulation will be to 
analyse the weekly reports and the questions and answers that will appear explicitly 
stated. The degree of transversality of the questions and their degree of 
interdependence can be used as factors to be taken into account. 

A second aspect concerning to which extent the “black boxes” associated to computer 
simulation have been enlightened has to be measured. The empirical data that will 
enable the measurement of this aspect is the final report. The students are required to 
justify not only the computer simulation options but also the mathematical model 
underlying the model. 

Another crucial point to be evaluated is the viability of the SRP. In this case the 
institutional conditions and constraints hindering (or facilitating) the development of 
the SRP experimented have to be studied. The nature of these conditions and 
constraints can be diverse: from practical aspects such as difficulties in the use of the 
laboratory equipment by the students to the rigidity of the time structure of the sessions 
(8 two-hour sessions during 4 weeks).  

The expected results consist in measuring to what extent the observed problematic 
didactic facts will be partially overcome. 

 



  

 
Fig 1: A priori question-answer map 
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